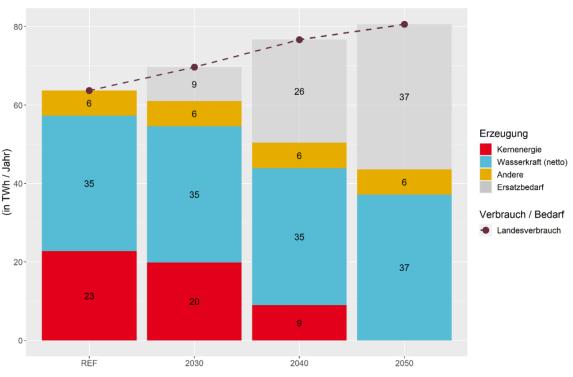


1. Energieversorgung Strom: Wo stehen wir heute?

2. Kurz-, mittel- und langfristige Massnahmen zur Stärkung der Versorgungssicherheit Strom


3. Herausforderung zukünftige Energieversorgung

Stromversorgung, Energie- & Klimaziele bis 2050

Entwicklung Stromnachfrage und -angebot bis 2050

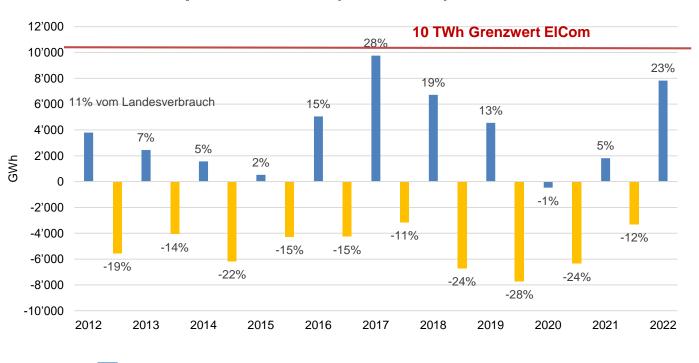
Quelle: VSE Energiezukunft 2050 Szenario: offensiv-integriert

Ziele der Schweiz 2050

- Netto Null CO₂-Emissionen
- Energiestrategie 2050

Situation heute (Ø 2012-2021)

- Produktion: 63 TWh (Netto)
- Verbrauch: 61.5 TWh (inkl. Verluste)
- Nettoimporte: 1.5 TWh (Exporte: 32.5 TWh; Importe: 31 TWh)


Entwicklung bis 2050

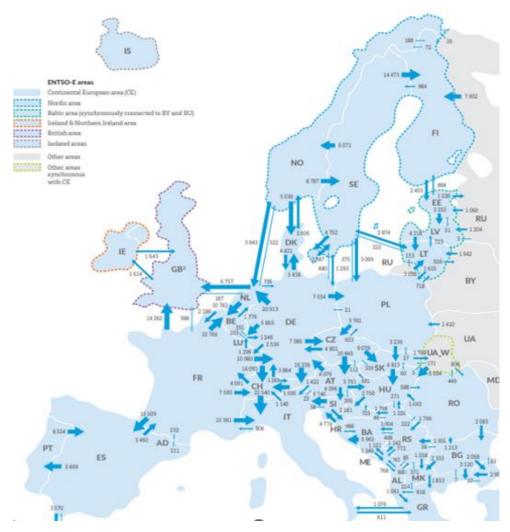
- Stark steigende Nachfrage durch Elektrifizierung (ca. 15 TWh)
- Ausstieg Kernenergie (-23 TWh)
- Ausbau erneuerbare Energien (> 36 TWh)

Die Schweiz ist bereits heute im Winter abhängig von Importen

Nettoimporte Schweiz (2012-2022)

Importe

- Die Schweiz ist im
 Winterhalbjahr
 Nettoimporteurin, im Sommer
 Nettoexporteurin.
- "rote Linie" der ElCom: max. 10
 TWh Importe im Winterhalbjahr


Winterhalbjahr
Sommerhalbjahr

Quelle: BFE (Gesamtenergiestatistik, Elektrizitätsstatistik 2020)

Europa: Grosse Abhängigkeiten und Risiken

Importe/Exporte in Europa in GWh (2018)

Quelle: Statistical Factsheet 2018, Entsoe

- Europäischer Strombinnenmarkt: Wohlfahrt maximieren
- Starker grenzüberschreitender Handel = gegenseitige
 Abhängigkeiten
- D und F sind wichtige Exporteure / CH hat hohe Importe und Exporte
- Strommix EU: Erneuerbare (39%), Kernenergie (24%),
 Gas (18%), weitere fossile (19%)

Unsicherheiten bei Stromproduktion in der EU:

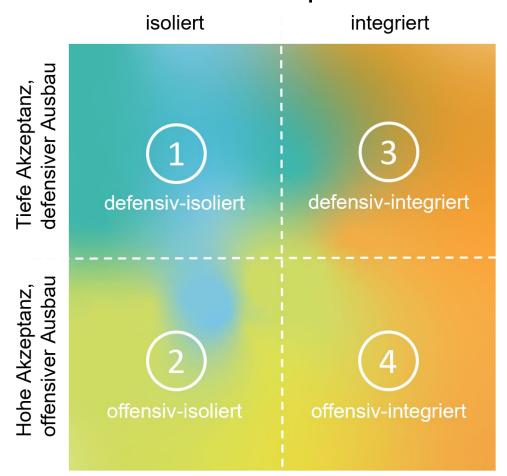
- D: Gaslieferungen u.a. für Stromproduktion,
 Wiederinbetriebnahme von Kohlekraftwerken (Ausstieg bis 2038), finaler Kernenergieausstieg (Frühling 2023)
- F: Revisionen Kernkraftwerke (2022 zeitweise mehr als 50% in Revisionen)
- Grossteil Europas: Trockenheit und folglich Produktion Wasserkraft unter Norm

Der Bund hat Massnahmen zur Verhinderung einer Mangellage und Stärkung der Versorgungssicherheit beschlossen

Finanzhilfen Stromunternehmen Ausbau Produktion

Sicherung Energieimporte (Gas) Bund hat auf allen Wertschöpfungs-stufen Massnahmen ergriffen

Senkung
Energieverbrauch /
mehr Energieeffizienz

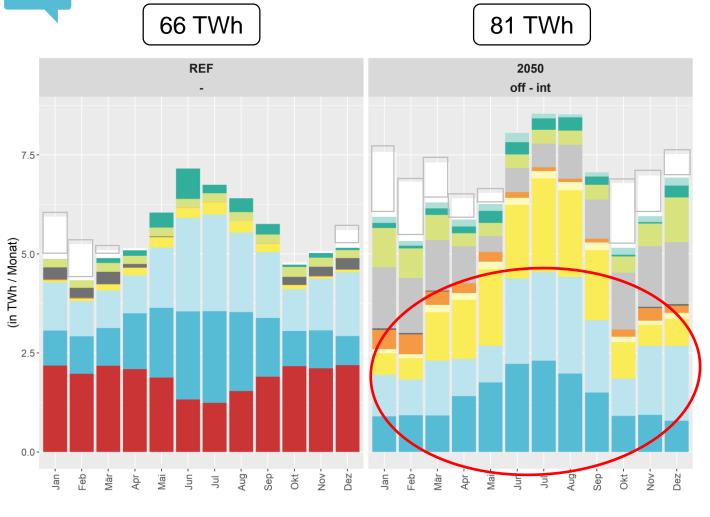

Sicherstellung Stromtransport Einführung Stromreserve

VSE-Empa-Studie «Energiezukunft 2050» modelliert das Schweizer Energiesystem bis 2050

Schweiz im energiepolitischen Verhältnis zu Europa

Vier Szenarien für die Schweiz

- Schweiz im energiepolitischen Verhältnis zu Europa: isoliert vs. integriert
- Akzeptanz neuer Energie-Infrastruktur in der Schweiz: defensiv vs. offensiv
- Die Energiezukunft 2050 untersucht auf wissenschaftlicher Basis, wie die Versorgungssicherheit der Schweiz unter Erfüllung der Klima- und Energieziele kosteneffizient erreicht werden kann und zeigt Konsequenzen heutiger Entscheide auf.


Akzeptanz neue Energie-Infrastruktur

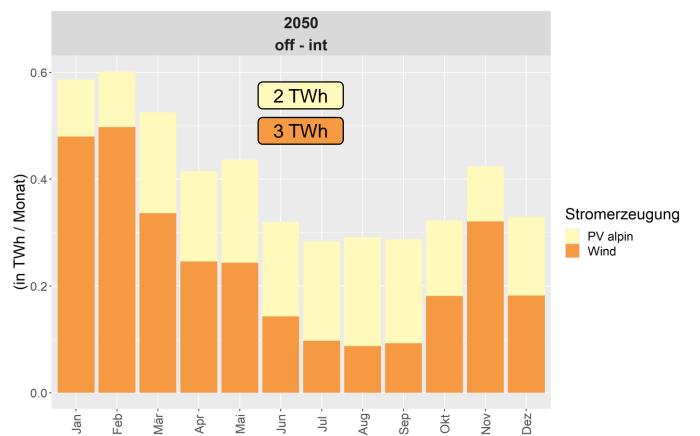
Wasserkraft sichert die Versorgung im Winter

Wasserkraft bleibt die tragende Säule im schweizerischen Energiesystem.

- Wasserkraft dominiert die **Inlanderzeugung** auch 2050 mit rund 35 TWh, obwohl kaum weiterer Ausbau
- Wasserkraft bleibt wichtig für Versorgungssicherheit im Winter
- **Netto-Importe** bleiben etwa gleich (1 TWh 2050), allerdings höhere Volatilität

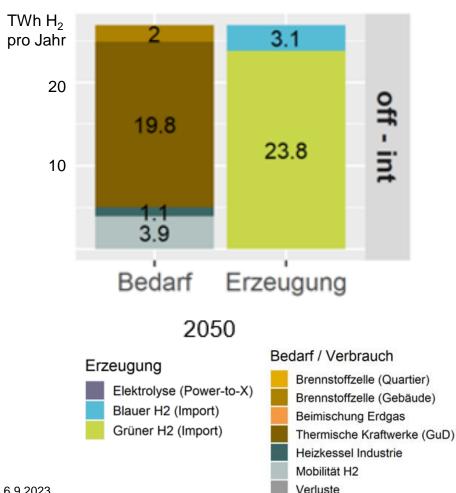
Erzeugung

☐ Netto-Importe Andere Speicher (Batterien, DSM) Andere Kraftwerke (inkl. KVA, Biomasse, Geothermie) Thermische Kraftwerke (H2 / Gas-Mix) PV (Dach / Alpin)


Wasserkraft (Laufwasser / Speicher)

Alpine PV und Wind ergänzen sich

Alpine Photovoltaik und Windkraft bringen für die Stromversorgung im Winter grosse Vorteile.


- Wenn Akzeptanz vorhanden
 ist, kann in grossem Umfang
 Windkraft und alpine
 Photovoltaik zugebaut
 werden
- Beide Technologien sind wirtschaftlich äquivalent
- komplementäre
 Produktionscharakteristik:
 Reduktion der
 Produktionsrisiken durch
 Nutzung beider Technologien
 (Diversifikation)

Günstiger Wasserstoff – eine Option ab 2040

Wasserstoff kann zu einem essenziellen Element der Schweizer Energieversorgung werden.

- Nach 2040 wird grüner Wasserstoff in **grossen** Mengen über eine europaweite Infrastruktur verfügbar sein
- Schweiz hat in den integrierten Szenarien den vollen, in den isolierten nur reduziert **Zugang** zur neuen Infrastruktur
- Der günstige Import-Wasserstoff wird primär zur Stromerzeugung in GuD-Kraftwerken verwendet und leistet somit einen wichtigen Beitrag zur Versorgungssicherheit
- Inländische Elektrolyse spielt aus wirtschaftlichen Gründen eine untergeordnete Rolle

Versorgungssicherheit durch Reserven

Backup-Kraftwerke und Speichervorhaltung ausserhalb des Marktes stärken die Versorgungssicherheit zusätzlich.

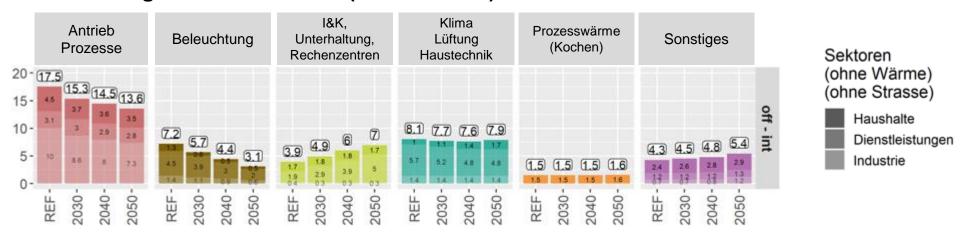
Speichervorhaltung (Hydro-Reserve)

0.8 bis 1.2 TWh
Speicherreserve
aus Wasserkraft
Winterenergie

Backup-Gaskraftwerke

- 1 GW Leistung ausserhalb des Marktes
- Vorhaltung f
 ür ausserordentliche
 Situationen, kein laufender Betrieb
- Kosten 1 Mia. CHF

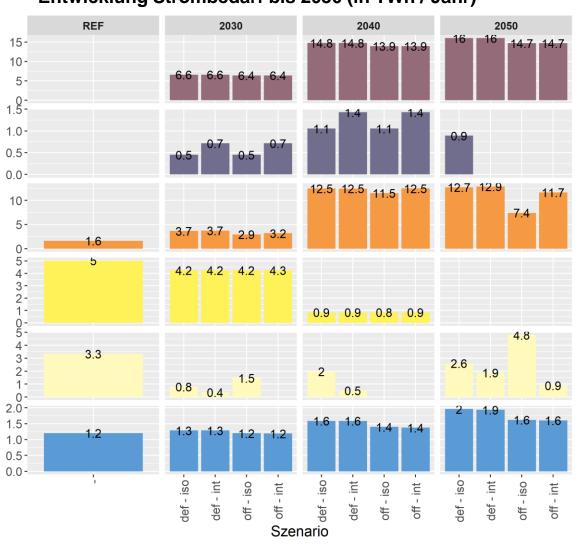
7 TWh Import Winter


36 TWh erneuerbare Produktion Winter im Inland

Versorgungssicherheit im Winter 2050 im offensiv-integrierten Szenario

Basisstrombedarf bleibt insgesamt in etwa gleich bis 2050

Entwicklung Basisstrombedarf (in TWh / Jahr)



- Strombedarf nimmt f
 ür viele Anwendungen ab aufgrund h
 öherer Effizienz
- Zunahme Strombedarf v.a. bei I&K / Unterhaltungselektronik & Rechenzentren im Zuge der Digitalisierung

Neue Stromverbraucher kommen hinzu

Entwicklung Strombedarf bis 2050 (in TWh / Jahr)

Verbraucher

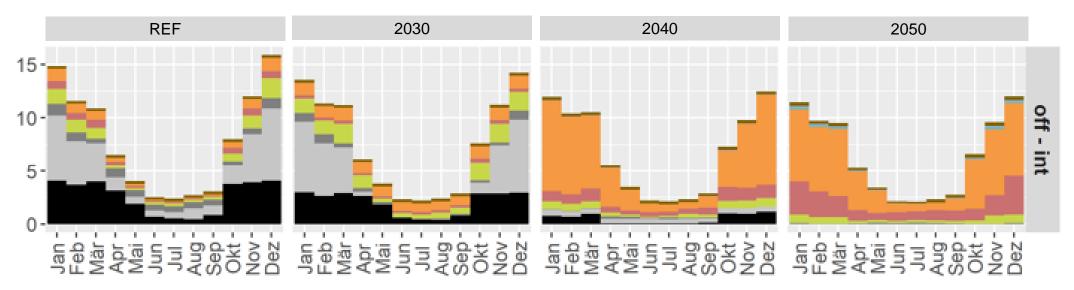
Mobilität (Strasse)

Elektrolyse (Power-to-X)

Wärmepumpen

Elektroheizungen

El. Prozesswärme

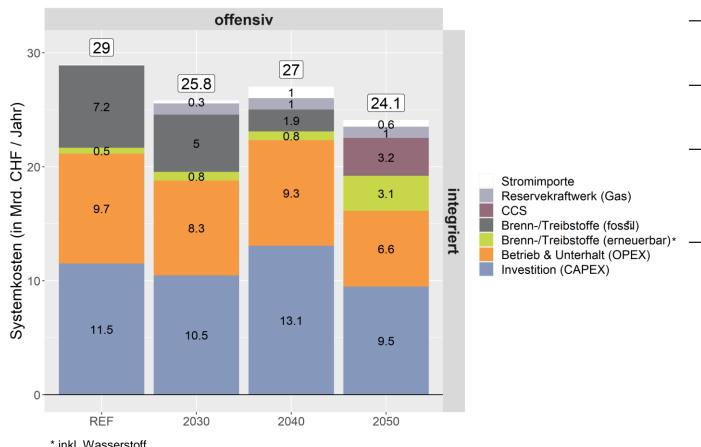

Kühlung (Haushalt, Dienstleistungen)

- Zusätzlicher
 Strombedarf v.a.
 für Mobilität,
 Wärmepumpen
 und Verstromung
 von Wasserstoff
- mehr Strombedarf für Kühlung
- Elektroheizungen fallen weg

Auch der Wärmesektor wird elektrifiziert

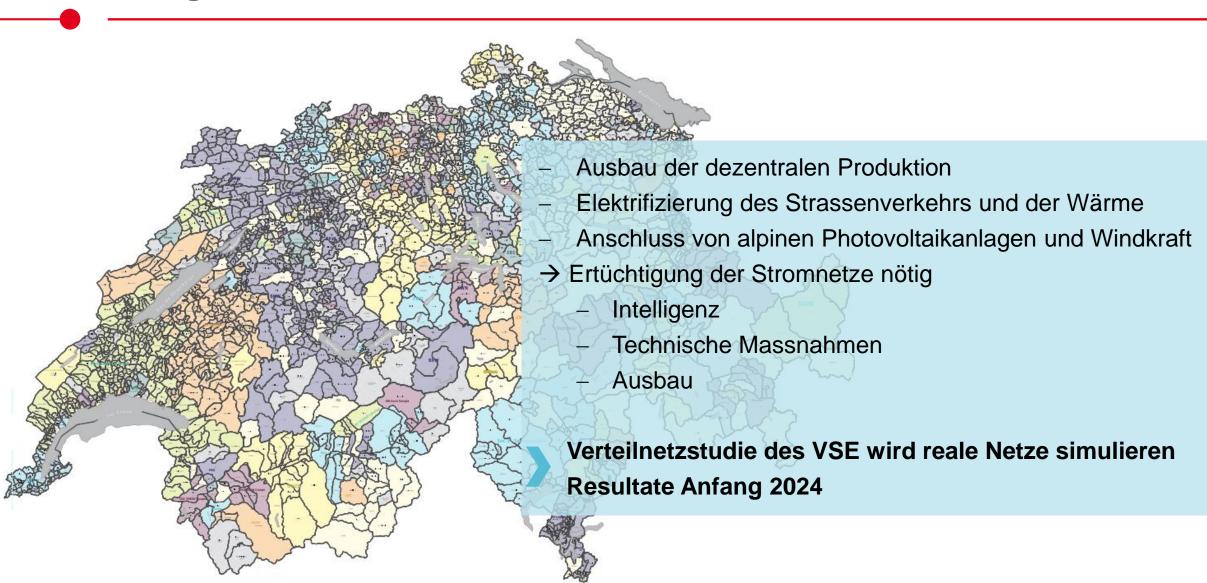
Entwicklung Energiebedarf verschiedener Wärmeanwendungen (in TWh / Monat)

- Öl- und Gasheizungen werden zwischen 2030 und 2040 sukzessive eliminiert
- Wärmepumpen und Fernwärme als wichtigste Ersatztechnologien im Gebäudebereich



Umbau führt zu tieferen Energiekosten

Ein umgebautes Energiesystem ist aufgrund der erhöhten Effizienz günstiger als der Status quo.



- Kosten sinken um bis zu 5 Mia. CHF gegenüber Status quo
- Wegfall der Kosten für fossile Brenn- und Treibstoffe
- Elektrifizierung des Energiesystems lässt Effizienz massiv ansteigen
 - Netzausbaukosten sind noch nicht berücksichtigt, folgen mit **VSE-Netzstudie**

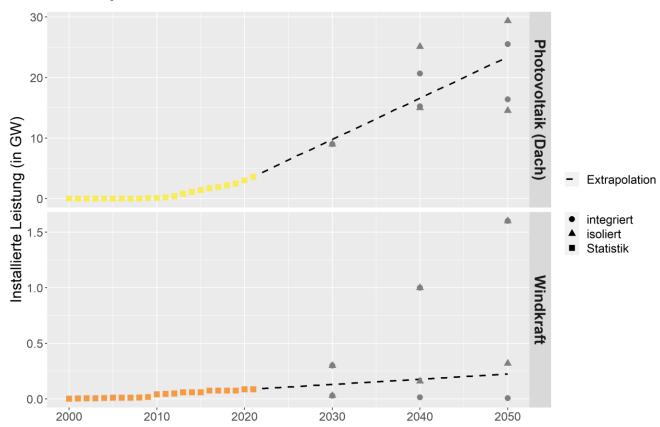
^{*} inkl. Wasserstoff.

Der Umbau des Energiesystems bedingt einen Um- und Ausbau des Stromnetzes

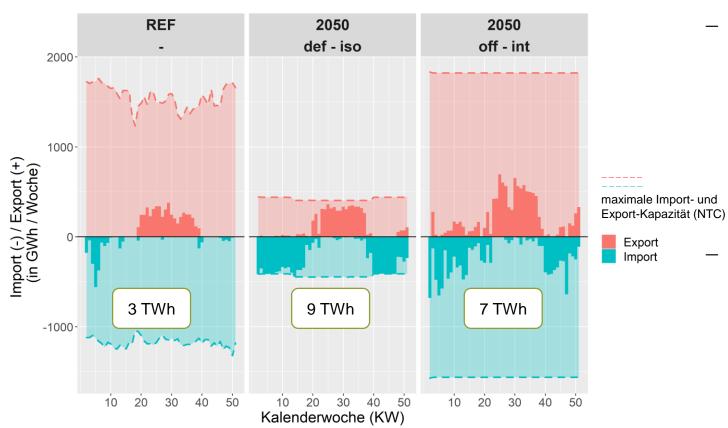
Kein Selbstläufer: Klima- und Energiezukunft braucht grosse zusätzliche Anstrengungen – von uns allen

- Versorgungssicherheit ist nationales Interesse.
- Ausbau der inländischen Produktion muss massiv beschleunigt werden. Um noch höhere Importabhängigkeit beim Strom zu verhindern, muss ein Automatismus geprüft werden (forcierter Zubau und Steigerung Effizienz).
- Es braucht den Um- und Ausbau der Netze und die entsprechende Finanzierung.
- Es braucht ein Abkommen Schweiz-EU im Energiebereich. Technische Vereinbarungen mit den Nachbarländern reichen nicht.
- Sektorkopplung macht Paradigmenwechsel nötig: von Stromversorgungs- zu Energieversorgungsgesetzgebung.
- Zunehmende Bedeutung von Speichern und Effizienz macht das Schaffen von Flexibilitätsmärkten unabdingbar.

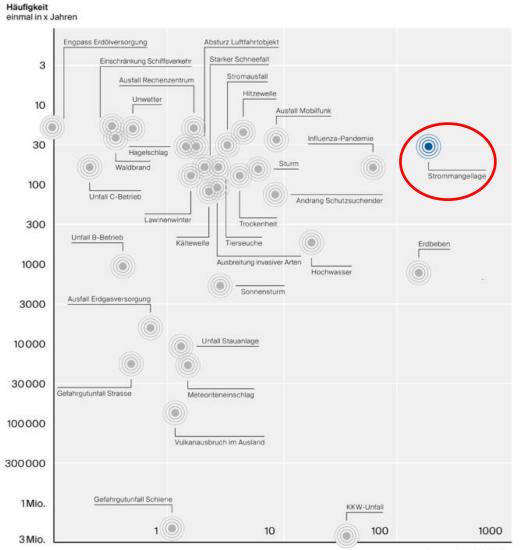
Vielen Dank für Ihr Interesse!


kristin.brockhaus@strom.ch

Zubau der Erneuerbaren verläuft bisher schleppend


- Zubaugeschwindigkeit der Erneuerbaren ist zu gering
- Wind muss viel stärker als heute zugebaut werden, PV-Zubaugeschwindigkeit der letzten 2 Jahre muss beibehalten werden
- Das Erreichen der Energie- und Klimaziele der Schweiz mit «weiter-wie-bisher» ist nicht sichergestellt.

Schweiz muss im Winter weiterhin Strom importieren


Die Schweiz bleibt Stromimporteurin. Im defensiv-isolierten Szenario bestehen keine Importreserven mehr.

- Importabhängigkeit im Winter steigt von heute 3 TWh
 - auf 7 TWh im Szenario offensiv-integriert
 - auf 9 TWh/a im Szenario defensiv-isoliert
 - 2040 zwischenzeitlich erhöhter Importbedarf, weil
 - KKW vom Netz gehen
 - Wasserstoffinfrastruktur noch nicht verfügbar

Hohes Risiko einer Strommangellage: höhere Kosten als bspw. Pandemie

Quelle: Bundesamt für Bevölkerungsschutz 2020: Gefährdungsdossier Strommangellage